Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Appl Biosaf ; 26(4): 179-192, 2021 Dec 01.
Article in English | MEDLINE | ID: covidwho-2017628

ABSTRACT

Introduction: We previously reported on the United States' regulatory environment evolving to accommodate an emerging boom in gene therapy research. Several important developments have transpired in the 2 years since that article was published, including the coronavirus disease 2019 (COVID-19) pandemic and the drive for large-scale testing of vaccines containing recombinant or synthetic nucleic acid molecules. This report highlights key developments in the field with a focus on biosafety and issues of note to biosafety professionals with responsibilities over clinical research. Discussion: We provide guidance for performing risk assessments on the currently approved gene therapy products as well as the most utilized types of investigational products in clinical trials. Areas of focus include the prominent approaches utilized in the three major areas of research: oncology, infectious diseases, and rare diseases. Conclusion: The COVID-19 pandemic has created several opportunities for continued growth in gene therapy. National vaccination campaigns will result in greater public acceptance of gene therapy research. Technological advancements that made the vaccine race possible will spur the next generation of research. Advancements born in the developed world set the stage for the creation of therapeutics to treat greater numbers in the developing world and have the potential for massive benefits to global public health. Biosafety professionals and Institutional Biosafety Committees play key roles in contributing to the safe evidence-based advancement of gene therapy research. Biosafety professionals responsible for clinical research oversight must be aware of emerging technologies and their associated risks to support the safe and ethical conduct of research.

2.
Appl Biosaf ; 27(2): 58-63, 2022 Jun 01.
Article in English | MEDLINE | ID: covidwho-1722150

ABSTRACT

Background: The Animal Biosafety Level 3 Enhanced (ABSL-3+) laboratory at St. Jude Children's Research Hospital has a long history of influenza pandemic preparedness. The emergence of SARS-CoV-2 and subsequent expansion into a pandemic has put new and unanticipated demands on laboratory operations since April 2020. Administrative changes, investigative methods requiring increased demand for inactivation and validation of sample removal, and the adoption of a new animal model into the space required all arms of our Biorisk Management System (BMS) to respond with speed and innovation. Results: In this report, we describe the outcomes of three major operational changes that were implemented to adapt the ABSL-3+ select agent space into a multipathogen laboratory. First were administrative controls that were revised and developed with new Institutional Biosafety Committee protocols, laboratory space segregation, training of staff, and occupational health changes for potential exposure to SARS-CoV-2 inside the laboratory. Second were extensive inactivation and validation experiments performed for both highly pathogenic avian influenza and SARS-CoV-2 to meet the demands for sample removal to a lower biosafety level. Third was the establishment of a new caging system to house Syrian Golden hamsters for SARS-CoV-2 risk assessment modeling. Summary: The demands placed on biocontainment laboratories for response to SARS-CoV-2 has highlighted the importance of a robust BMS. In a relatively short time, the ABSL-3+ was able to adapt from a single select agent space to a multipathogen laboratory and expand our pandemic response capacity.

SELECTION OF CITATIONS
SEARCH DETAIL